Choice of generalized linear mixed models using predictive crossvalidation

نویسندگان

  • Julia Braun
  • Daniel Sabanés Bové
  • Leonhard Held
چکیده

The choice of generalized linear mixed models is difficult, because it involves the selection of both fixed and random effects. Classical criteria like Akaike’s information criterion (AIC) are often not suitable for the latter task, and others which are useful in linear mixed models are difficult to extend to the generalized case, especially for overdispersed data. A predictive leave-one-out crossvalidation approach is suggested that can be applied for choosing both fixed and random effects, even in models with overdispersion, and is based on proper scoring rules. An attractive feature of this approach is the fact that the model has to be fitted just once to the data set, which makes computations fast and convenient. As the calculation of the leave-one-out predictive distribution is not possible analytically, it is shown how an iteratively weighted least squares algorithm combined with some analytic approximations can be used for this task. A simulation study and two applications of the methodology to binary and count data are provided, as well as comparisons with two other methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parameter Estimation in Spatial Generalized Linear Mixed Models with Skew Gaussian Random Effects using Laplace Approximation

 Spatial generalized linear mixed models are used commonly for modelling non-Gaussian discrete spatial responses. We present an algorithm for parameter estimation of the models using Laplace approximation of likelihood function. In these models, the spatial correlation structure of data is carried out by random effects or latent variables. In most spatial analysis, it is assumed that rando...

متن کامل

Non-linear Bayesian prediction of generalized order statistics for liftime models

In this paper, we obtain  Bayesian prediction intervals as well as Bayes predictive estimators under square error loss for generalized order statistics when the distribution of the underlying population belongs to a family which includes several important distributions.

متن کامل

Bayesian Inference for Spatial Beta Generalized Linear Mixed Models

In some applications, the response variable assumes values in the unit interval. The standard linear regression model is not appropriate for modelling this type of data because the normality assumption is not met. Alternatively, the beta regression model has been introduced to analyze such observations. A beta distribution represents a flexible density family on (0, 1) interval that covers symm...

متن کامل

Non Uniform Rational B Spline (NURBS) Based Non-Linear Analysis of Straight Beams with Mixed Formulations

Displacement finite element models of various beam theories have been developed traditionally using conventional finite element basis functions (i.e., cubic Hermite, equi-spaced Lagrange interpolation functions, or spectral/hp Legendre functions). Various finite element models of beams differ from each other in the choice of the interpolation functions used for the transverse deflection w, tota...

متن کامل

Spatial structure of breast cancer using Poisson generalized linear mixed model in Iran

Background: Breast cancer is one of the most common diseases in women and causes more deaths rather than other cancers. The increasing trend of breast cancer in Iran makes clear the need of extensive breast cancer research in this area. Some studies showed that in the variety countries and even in the different areas in one country has different risk of breast cancer incidence and this is a rea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computational Statistics & Data Analysis

دوره 75  شماره 

صفحات  -

تاریخ انتشار 2014